MEETING PROTOCOL

• Staff will control the Powerpoint presentation that includes everything submitted by the applicant by the deadline, in accordance with the Submittal Requirements. Applicants simply need to ask staff to advance to the next slide during your presentation.

• Applicants, staff and Board members are required to give their name whenever speaking.

• Video and microphone has been disabled for all attendees. Attendees (not Board members or staff) will only be given the capabilities to speak when they are called on during the public comment period.

• Chat and the Q & A functions have been disabled for everyone.

• Public Comment:
 o The applicants (all team members) and the public have been required to register, indicate the project they wish to comment on, and submit any documents in advance of the meeting.

 o Just as in an in-person meeting, all applications heard today are part of a public meeting format. If you have registered and will speak during the public comment portion of the meeting you will need to state your name and address for the record.

 o Those members of the public that have registered will be called in order by project.

 o Members of the public that speak are encouraged to remain in the meeting for the completion of the item they have commented on.

 o Staff will call on the registered members of the public to speak for each project. Unregistered members of the public who raise their hand will not be called on.

• Board:
 o Board members should open the “Participants” panel so that each Board member can see the status of other Board members’ microphones and cameras.
MEETING PROTOCOL (continued)

- Board members will be polled by the chair for comments and for their vote on a motion. Each member, when voting, should respond “Yea, in favor” or “Nae, not in favor”. The Chairman shall re-read the motion verbatim and the Board member making the motion should correct the Chairman if he has not re-read the motion accurately.

- If a Board member needs to recuse, he will be temporarily removed from the meeting and placed back in the meeting at the start of the next agenda item.

- If the Board needs to go into Executive Session, they will call into a separate conference line and all video and audio on Zoom will be temporarily turned off until they are ready to return to the regular meeting.

 - Staff will issue meeting results, including staff comments and Board Motion to the applicant following the meeting. Results will also be posted on the City website at www.charleston-sc.gov/drb.

 - For additional information:
 - Contact DRB@charleston-sc.gov
 - Visit www.charleston-sc.gov/drb if you are experiencing technical difficulties during the meeting.

 - These proceedings are being recorded.
Agenda Item #1

GLENN MCCONNELL PKWY. AND W. WILDCAT BLVD.
TMS # 306-00-00-012

Request preliminary approval for the construction of a gas station/car wash/convenience store.
SPINX #368 - WEST WILDCAT BLVD.

LOCATED IN

CITY OF CHARLESTON
WEST ASHLEY

AT 4000 W. WILDCAT BLVD.

CHARLESTON COUNTY, SOUTH CAROLINA

CITY PROJECT ID # TRC-SP2020-000317
PROPOSED POND
WITH PERMANENT
POOL REMAINING
THROUGHOUT
CONSTRUCTION
UNDERGROUND
FUEL TANKS
PROPANE
BIKE RACK
SIGN
AREA
LOADING
PROPANE
BIKE RACK
SIGN

DATE:
PROJECT NO:
PRINCIPAL:
PROJECT ARCHITECT:
DESIGN:
DRAWN:
CHECKED:
01-20-21
0534.00
K. BETSCH
K. BETSCH
K. BETSCH
N. CARLTON
K. BETSCH

SPINX 368
WEST WILDCAT BOULEVARD
CHARLESTON, SC

COPYRIGHT 2011 BY BETSCH ASSOCIATES, INC. ALL RIGHTS RESERVED. NO PART OF THIS DOCUMENT MAY BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM, OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC, MECHANICAL, PHOTOCOPYING, RECORDING OR OTHERWISE

A1.1
1 ELEVATION ALONG WEST WILDCAT BOULEVARD

2 ENLARGED STREET ELEVATION

3 ENLARGED STREET ELEVATION

4 SCREEN WALL DETAIL

SCALE: 1/2" = 1'-0"
MORTAR BARRIER - TYP.
- TURN DOWN EDGE @ FOOTING
4" SLAB COVERED W/ BUILDING WRAP & 5/8" GWB (INTERIOR)
W/ 5/8" NOM. OSB SHEATHING (EXTERIOR), 6" STRUCTURAL STUDS @ 24" O.C. W/ R-19 BATTS

SEE STRUCTURAL DWGS. FOR JOIST SIZE
1-1/2" METAL DECK
RIGID INSULATION OVER
FOR TUBE SIZE
AND I.R. INSULATED (TINTED) GLASS W/ THERMAL BREAK
W/ BREAK METAL TO MATCH STOREFRONT - TYP.
EXPOSED INTERIOR COLUMN BEYOND - WRAP
SHIM TO BRING GWB EVEN W/ STOREFRONT
2X BLOCKING FOR GWB. ATTACHMENT FASTEN ON BOTH SIDES OF CHANNEL & 5/8" GWB. (INTERIOR)
NOM. OSB SHEATHING (EXTERIOR), W/ R-19 BATTS W/ 5/8"
6" STRUCTURAL STUDS @ 24" O.C. [176x1451] TPO ROOF MEMBRANE OVER [176x1540] TPO ROOF FLASHING OVER

3/4" PLYWOOD SHEATHING (EXTERIOR), COVERED W/ BUILDING WRAP W/ 5/8" NOM. OSB SHEATHING
6" STRUCTURAL STUDS @ 24" O.C.
STEEL TUBE SEE STRUCTURAL DWGS.
5" x 5" x
[206x973] 8
[206x977] 3
[209x973]" STEEL ANGLE WELDED TO 6" BOTT. CHANNEL
EL=12'-2"

A-5.6
3
[409x682] A-5.6
3
[409x682] SCALE:
DETAIL @ FOOTING
1-1/2"= 1'-0"
FACE OF STUD TO FACE OF BRICK, TYP.

SCALE:
FRONT CANOPY DETAIL
1-1/2"= 1'-0"
CONT. CAULK - TYP.
CAULK CONTINUOUS - TYP.

SCALE:
REAR WALL @ REAR DOOR
1-1/2"= 1'-0"

SCALE:
KNEE WALL FOOTING DETAIL @ COOLERS
1-1/2"= 1'-0"

WALL SECTIONS

SPINX 368
WEST WILDCAT BOULEVARD
CHARLESTON, SC

REVISIONS
Greenville, SC 29611

DATE: 01-20-21

K. BETSCH
PROJECT NO: 0534.00
PRINCIPAL:
DESIGN:
CHECKED:
K. BETSCH
Betsch
Greenville, SC 29601
Phone: (864) 527-4700
Fax: (864) 527-4705
Planning
Architecture
Interior Architecture

A5.6
A10.2
Material Selections • Spinx 368

- Brick Veneer
- Tower Roof Fascia and Soffit Coping Cover • Mansard Brown
- Brick Reveals and Soldier Course - Palmetto Brick .75 Greystone
- Arbor and Aluminum Storefront - Medium Bronze
- Metal doors and Other Painted Metal to Match Brick Veneer
Request preliminary approval for the construction of a one-story dialysis center.
ARCHITECT / ENGINEER CONTACTS

ARCHITECT
RANDALL DOVER, ARCHITECT
631 BILLSBORO ROAD, SUITE 303
NASHVILLE, TENNESSEE 37213
PHONE: (615) 271-1288
CONTACT: RANDALL DOVER

MEP ENGINEER
QUEST DESIGN GROUP
6001 LENOX VILLAGE DRIVE
SUITE 108
NASHVILLE, TENNESSEE 37221
PHONE: (615) 309-9926
CONTACT: NICK HERR

STRUCTURAL ENGINEER
EMC STRUCTURAL ENGINEERS, P.C.
4925 TRUSSDALE DRIVE
NASHVILLE, TENNESSEE 37204
PHONE: (615) 781-8109
CONTACT: DAN BORSOS

CIVIL ENGINEER
JOHNSON, LASCHROER & ASSOCIATES, P.C.
701 EAST BAY STREET, SUITE 304
CHARLESTON, SOUTH CAROLINA 29403
PHONE: (843) 619-4656
CONTACT: HERBERT W. GILLIAM

OWNER
DIALYSIS CLINIC INCORPORATED
1633 CHURCH STREET
NASHVILLE, TENNESSEE 37203
PHONE: (615) 327-0761
CONTACT: PAUL PASSMAN

LIST OF DRAWINGS

ARCHITECTURAL & CIVIL
COVER COVER SHEET
CV01 SITE SURVEY - EXISTING CONDITIONS
CD01 DEMOLITION PLAN
L-04 LANDSCAPE PLAN
L-101 LANDSCAPE PLAN
L-102 TREE PROTECTION BARRICADE PLAN
J2.2 SITE PHOTOMETRIC PLAN
A09 ARCHITECTURAL SITE PLAN
A0.1 ARCHITECTURAL SITE DETAILS
A0.2 ARCHITECTURAL SITE DETAILS
A10 FLOOR PLAN - DIMENSIONED
A4.0 BUILDING ELEVATIONS
A4.1 BUILDING ELEVATIONS
A4.2 EXISTING SITE PHOTO & STREET ELEVATIONS
A4.3 BUILDING RENDERINGS
A4.4 COLOR PALETTE, LIGHTING & ARCHITECTURAL DRB RESPONSE
A4.5 COLORED ELEVATIONS
A4.6 COLORED ELEVATIONS
A4.7 OLD AND NEW DESIGN STREETSCAPE COMPARISONS
A4.8 OLD AND NEW DESIGN ELEVATION COMPARISONS
A5.0 BUILDING SECTIONS
A6.0 EXTERIOR WALL SECTIONS
A6.1 EXTERIOR WALL SECTIONS

ARCHITECT
FEBRUARY 4, 2021
DIALYSIS CLINIC INCORPORATED
WEST ASHLEY FACILITY
HENRY TECKLENSBURG DRIVE
CHARLESTON, SOUTH CAROLINA
DEMOLITION NOTES:

1. TREES TO BE REMOVED ARE SHOWN BOLD WITH GC.
2. CONSTRUCTION CREWS ARE RESPONSIBLE FOR ALL EXISTING FIELD CONDITIONS
3. ALL EMBANKMENTS TO BE MITIGATED FROM SITE & LEFT IN PLACE PER SITE DEVELOPMENT PLAN.
4. UNLESS MENTIONED OTHERWISE, REMOVE GRAND TREES TO BE REMOVED.

LEGEND:

- Grand Tree to Remain
- Tree to Remain
- Tree to Be Removed

NOTES:

- Dates / Issue
- Prior to Demolition & Construction Work.
In total there are fourteen trees and shrubs planned for the site. According to the South Carolina Wildlife Federation (SCWF) twelve of the fourteen plants are native plants valuable to wildlife. The two plants that are not native are Drake Chinese Elm and Cleyera. Chinese Elm is used to landscape the parking lot, because unlike native options like sweetgum, oaks, and magnolias, Chinese Elm does not have sizable fruit or flower droppings. As the site is planned to be a Dialysis Clinic, providing a tree that does not produce potential tripping hazards is of utmost importance. Of the recommended tree options listed in Appendix A, Lacebark Elm seems most appropriate for the site even though it is not a native tree. According to SCWF there are only eight evergreen shrubs that can be used to landscape, none of which are listed within Appendix A. Therefore, Cleyera was chosen to be used as the evergreen buffer shrub.

The plant palette for the planned DCi West Ashley Dialysis Clinic complements the surrounding developed and natural landscape and also has elements that distinguish the site from neighboring properties. Street trees are Live Oaks which match the neighboring Charleston ENT Office and Ashley Gardens properties to provide a consistent street tree along Henry Tecklenburg Drive.

On the North Side (road side) of the building Sabal Palms are centered on the building windows and follow the curve of the multi-use path. Sabal Palms match the neighboring Ashley Gardens and Charleston ENT Office's palms. Shenandoah Switch Grass complements the Muhly Grass on the ENT Office kitty corner to the site. Yucca provides white blooms in summer, Orange Daylilies provide orange blooms in summer, and Leucothoe provides evergreen color year round. Sabal Palms, Shenandoah Switch Grass and Daylilies are included in the Landscape Buffer Requirements Recommended Tree and Shrub Species, Appendices A and B. (Sabal Palm-A, Switch Grass-B, Daylily-A). Yucca and Leucothoe are natives per the SCWF.

The West Side (Ashley Gardens side) has the building entrance and features Orange Daylilies, Wild Hydrangea, and Shenandoah Switch Grass. The Daylilies and Hydrangeas provide a colorful welcoming entry to the building in the spring and summer. In fall and winter evergreen Yucca and Liriope and dormant Shenandoah Switch Grass persist. Sweetbay Magnolias add a vertical evergreen element. The South side of the building continues with elements already mentioned. Redbud Magnolias are included on the Recommended Tree and Shrub Appendix A. Wild Hydrangeas are native per the SCWF.

The east side of the building will be the shadiest area on the site. As such shade tolerant plants such as and Itea are selected for this area. Both plants are listed as recommended species in The City of Charleston's Tree and Landscape Ordinances Appendix B.

The parking lot landscape palette is composed of Drake Chinese Elm, Bald Cypress, Yucca, Sabal, and Liriope. The Yucca and Itea provide an evergreen buffer between the parking lot and the street. Bald Cypress and Liriope provide sizeable canopy for shade in the summer months. Bald Cypress and Chinese Elm will provide shade to the current residents. All trees and shrubs were selected from The City of Charleston's Tree and Landscape Ordinances.

The landscape buffer at the rear of the property has its plant palette selected to create diversity and a strong visual buffer to screen the retention pond from the neighboring apartments. Wax Myrtles are placed along the two access roads to create an evergreen hedge that filters the view. Arrowwood Viburnum are used to provide additional vertical evergreen screening of the pond. Redbud Magnolias are included along the multi-use path to complement the evergreen elements of the site.

The site's plant palette is selected from The City of Charleston's Tree and Landscape Ordinances Appendix B.

DCi West Ashley Dialysis Clinic
2280 Henry Tecklenburg Drive
Charleston, SC 29414
JLA Project Number: 1042.2001
February 1, 2021
STANDARDS FOR SHARE TREES

1" = 20'

SHALL PROVIDE A DIAMETER OF PROTECTION AROUND THE TREE EQUAL IN FEET TO THE dbh OF THE TREE.

DISTANCE OF 10' FROM THE BASE OF EACH PROTECTIVE TREE

GRAND TREES REQUIRE 12' MINIMUM CLEARANCE PLUS ADDITIONAL 1' OF CLEARANCE FOR DEVELOPMENT ACTIVITIES AND SHALL REMAIN IN PLACE UNTIL DEVELOPMENT ACTIVITIES ARE COMPLETED.

ALL PRUNING OF PROTECTED TREES AND GRAND TREES SHALL BE DONE BY A QUALIFIED TREE SURVEYOR.

NOTE:

1. PROTECTED STREET LIGHTS REQUIRE 3'-0" OF CLEARANCE FROM THE BOTTOM OF THE STREET LIGHT TO THE LOWEST POINT OF THE CONDUIT.

2. ALL CONDUIT MUST BE INSPECTED BY THE PROPOSED LIGHTING INSTALLER PRIOR TO INSTALLATION.

3. ABC-11 PRIMARY CONDUITS SHALL BE STAGED IN THE FIELD AND APPROVED BY THE DEPARTMENT OF PUBLIC SERVICES PRIOR TO INSTALLATION.

4. CONTRACTORS SHALL BE RESPONSIBLE FOR ALL PUBLIC LOCATIONS THAT ARE NOT PREVIOUSLY EXPRESSED.

5. ALL PRUNING OF PROTECTED TREES AND GRAND TREES SHALL BE DONE BY A QUALIFIED TREE SURVEYOR.

6. CONTRACTORS SHALL BE RESPONSIBLE FOR VERIFYING CONDUIT IS INSTALLED ACCORDING TO THE STANDARDS STATED IN THE ENGINEERING SPECIFICATIONS.

7. ALL CONDUIT MUST BE INSPECTED BY THE PROPOSED LIGHTING INSTALLER PRIOR TO INSTALLATION.

8. CONTRACTORS SHALL BE RESPONSIBLE FOR VERIFYING CONDUIT IS INSTALLED ACCORDING TO THE STANDARDS STATED IN THE ENGINEERING SPECIFICATIONS.

9. ALL PRUNING OF PROTECTED TREES AND GRAND TREES SHALL BE DONE BY A QUALIFIED TREE SURVEYOR.

10. CONTRACTORS SHALL BE RESPONSIBLE FOR VERIFYING CONDUIT IS INSTALLED ACCORDING TO THE STANDARDS STATED IN THE ENGINEERING SPECIFICATIONS.
SITE DETAILS

ARCHITECTURAL

- Sheet Number: 19019.0
- Sheet Title: W. ASHLEY FACILITY
- Project Number: (2280) HENRY TECKLENBURG DR
- CHARLESTON, SOUTH CAROLINA 29414

MONUMENT SIGN ELEVATION

- Scale: 1/4" = 1'-0"
- POST CAP: 1-5/8" DIAMETER
- TOP RAIL: CLASS 2B 2" SQ. x 9-GAUGE GALVANIZED CHAIN LINK FENCING
- 2-1/2" INTERMEDIATE POST. 3" CORNER AND TERMINATION POST. 1-5/8" DIAMETER
- BOTTOM POST: SECURE 1'-0" DIAMETER
- 3000 P.S.I. CONCRETE 4" 3'-4" 8'-0"
- MINIMUM 1/8" x 1" TENSION BAND TENSION BARS 1/4" x 3/4" END CLAMPS 1-5/8" INTERMEDIATE RAIL.

NOTE: PROVIDE 8'-6" WIDE X 8'-0" HIGH DOUBLE SWING GATE WITH POST LATCH, LOCK FENCE TO BOTTOM POST WITH 6 GA. COIL WIRE. AND KEY. GALVANIZED MATERIAL THROUGHOUT. REFER TO PLAN FOR LOCATION.

MONUMENT SIGN SECTION

- 8" HARDIE SIDING PAINTED IN SW 6241 "ALEUTIAN"
- 4" STONE CAP TO MATCH BUILDING MERIDIAN BRICK MODULAR BRICK IN "CITADEL"
- ROOF ELEMENT CLAD IN DARK BRONZE COPING

MONUMENT SIGN PLAN SECTION

- PROVIDE A 12" CONCRETE FOUNDATION W/ TWO (2) #5 REBAR SEGMENTS REINFORCING THE LENGTH, AND FIVE (5) #5 REBAR SEGMENTS REINFORCING THE WIDTH.
- VERTICAL 5/8" REBAR FROM FOOTING TO TOP OF CMU’S. FILL CMU CAVITIES WITH GROUT.
- EMBED COLUMNS WITHIN GROUT-FILLED CAVITIES DOUBLE 4" STEEL TUBE TO MATCH BUILDING IN DARK BRONZE
- 8" HARDIE SIDING PAINTED IN SW 6241 "ALEUTIAN"
- 4" STONE CAP TO MATCH BUILDING MERIDIAN BRICK MODULAR BRICK IN "CITADEL"
- ROOF ELEMENT CLAD IN DARK BRONZE COPING

MONUMENT SIGN ELEVATIONS

- 8'-8" 2'-8" 8'-2" 2'-2" 2'-0" 4'-10" 6" 9 3/4" DOUBLE 4" STEEL TUBE TO MATCH BUILDING IN DARK BRONZE
- 8" HARDIE SIDING PAINTED IN SW 6241 "ALEUTIAN"
- 4" STONE CAP TO MATCH BUILDING MERIDIAN BRICK MODULAR BRICK IN "CITADEL"
- ROOF ELEMENT CLAD IN DARK BRONZE COPING

GENERATOR ENCL. ELEVATION

- PROVIDE A 12" CONCRETE FOUNDATION W/ TWO (2) #5 REBAR SEGMENTS REINFORCING THE LENGTH, AND FIVE (5) #5 REBAR SEGMENTS REINFORCING THE WIDTH.
- VERTICAL 5/8" REBAR FROM FOOTING TO TOP OF CMU’S. FILL CMU CAVITIES WITH GROUT.
- EMBED COLUMNS WITHIN GROUT-FILLED CAVITIES DOUBLE 4" STEEL TUBE TO MATCH BUILDING IN DARK BRONZE
- 8" HARDIE SIDING PAINTED IN SW 6241 "ALEUTIAN"
- 4" STONE CAP TO MATCH BUILDING MERIDIAN BRICK MODULAR BRICK IN "CITADEL"
- ROOF ELEMENT CLAD IN DARK BRONZE COPING

MONUMENT SIGN ELEVATION

- SCALE: 1/2" = 1'-0"
- NORTH ELEVATION
- SOUTH ELEVATION
- EAST/WEST ELEVATION

MONUMENT SIGN PLAN SECTION

- SCALE: 1/2" = 1'-0"
- NORTH ELEVATION
- SOUTH ELEVATION
- EAST/WEST ELEVATION
NOTE: SEE G1.1 AND A1.2 FOR WALL TYPE LOCATIONS
AND DESCRIPTIONS

NOTES TO SHEET

TOTAL SQUARE FOOTAGE
13,456 SF

FLOOR PLAN - DIMENSIONED

SCALE 1"=1'-0"

TYPICAL DIALYSIS STATION LAYOUT

A1.0
1. PRE-FINISHED METAL COPING, REFERENCE DETAIL 13/A3.0
2. PRE-FINISHED METAL COPING, REFERENCE DETAIL 13/A3.0
3. ROOF ACCESS HATCH, SEE 11/A3.0 FOR HATCH DETAIL
4. 6-MIL ROOFING MEMBRANE ADHERED TO R-30 RIGID INSULATION ATOP 3/4" PLYWOOD DECKING. SLOPE ROOF 1/4" PER 1'-0" MIN.
5. PROVIDE 12" X 12" PRE-FINISHED SCUPPER HEADS W/ DOWNSPOUTS, SEE DETAIL 14/A3.0
6. PROVIDE GALVALUME STANDING SEAM METAL ROOF
7. PROVIDE 8" GUTTER W/ DOWNSPOUTS
8. OVERFLOW SCUPPER LOCATIONS, SEE DETAIL 15/A3.0
9. SEE MECHANICAL FOR HVAC UNITS
10. PROVIDE ROOF CRICKET
11. PROVIDE 4'-0" SCREENING FOR RTU'S.
EXISTING STREETSCAPE

STREETSCAPE ELEVATION WITH PROPOSED LANDSCAPING

STREETSCAPE ELEVATION WITH PROPOSED LANDSCAPING HIDDEN
DRB COMMENT RESPONSE

1. Study the continuity for each of the 3 masses of the building.
 The building finishes have been tweaked to better express the continuity of the three masses.

2. Incorporate gutters and downspouts into the massing.
 Gutters and downspouts have been incorporated into the massing. The roof profiles have also been narrowed per Board’s comments.

3. Study the support of the column bases of the port cochere.
 The column and column bases have been thickened.

4. Present a color pallet at the next review studying natural/neutral colors.
 Provided.

5. Study the overhangs and present a detail for the overhead construction.
 Wall sections have been provided on A6.0 and A6.1.

6. Make all the fenestration deep-set into the walls.
 Fenestration has been set as deeply as possible.

7. Show the location of the monument signs.
 Monument sign locations and details have been provided.

8. Landscape needs a concept to accompany the building design.
 See landscape response.

9. Provide a landscape sense of entry.
 See landscape response.

10. Continue to study moving the building further south away from the street.
 The building has been moved back an additional 8’0.” It is not possible to move further back due to an existing Grand Tree.
FEBRUARY 4, 2021

COLORED ELEVATIONS

NORTH ELEVATION

WEST ELEVATION
FOURTH DESIGN STREETSCAPE ELEVATION WITH PROPOSED LANDSCAPING

THIRD DESIGN STREETSCAPE ELEVATION WITH PROPOSED LANDSCAPING

SECOND DESIGN STREETSCAPE ELEVATION WITH PROPOSED LANDSCAPING

FIRST DESIGN STREETSCAPE ELEVATION WITH PROPOSED LANDSCAPING
FEBRUARY 4, 2021

OLD & NEW DESIGN ELEVATION COMPARISONS

FIRST DESIGN NORTH ELEVATION
SECOND DESIGN NORTH ELEVATION
THIRD DESIGN NORTH ELEVATION
FOURTH DESIGN NORTH ELEVATION

FIRST DESIGN WEST ELEVATION
SECOND DESIGN WEST ELEVATION
THIRD DESIGN WEST ELEVATION
FOURTH DESIGN WEST ELEVATION

FIRST DESIGN SOUTH ELEVATION
SECOND DESIGN SOUTH ELEVATION
THIRD DESIGN SOUTH ELEVATION
FOURTH DESIGN SOUTH ELEVATION

FIRST DESIGN EAST ELEVATION
SECOND DESIGN EAST ELEVATION
THIRD DESIGN EAST ELEVATION
FOURTH DESIGN EAST ELEVATION

PRELIMINARY REVIEW DESIGN NORTH ELEVATION
PRELIMINARY REVIEW DESIGN SOUTH ELEVATION
PRELIMINARY REVIEW DESIGN WEST ELEVATION
PRELIMINARY REVIEW DESIGN EAST ELEVATION
EXTERIOR WALL SECTION

1" = 1'-0"

SITE CAST CONCRETE COLUMN BASES, TYP.

CONCRETE SIDEWALK, REF. CIVIL.

SITE CAST CONCRETE TURN DOWN SLAB, REF. STRUCT.

R-10 RIGID INSULATION, TYP.

5" STONE WATER TABLE TO MATCH SITE CAST CONCRETE COLUMN BASES

2" TYP. COMMERCIAL WRAP BARRELL, TYP.

MERIDIAN BRICK MODULAR BRICK IN "VIA VITA"

2" CIP REBAR, TYP.

PRESSURE TREATED 2X6 WOOD SILL PLATE, TYP.

ANCHOR BOLT, REF. STRUCT.

SITE CAST CONCRETE TURN DOWN SLAB, REF. STRUCT.

R-10 RIGID INSULATION, TYP.

STEEL BEAM BEYOND, REF. STRUCT.

OPEN WEB STEEL JOIST, REF. STRUCT.

SITE CAST CONCRETE COLUMN BASES, TYP.

1X8 TRIM CLAD IN DARK BRONZE COPING

HARDIE BEAD BOARD TRIM, PAINTED WHITE

2X2 ANGLE

1X4 TRIM CLAD IN DARK BRONZE COPING

HARDIE BEAD BOARD TRIM, PAINTED WHITE

8" HARDIE BOARD SIDING, PAINTED IN SW 6241 "ALEUTIAN"

3/4" MARINE GRADE PLYWOOD SHEATHING, TYP.

4" METAL STUD 16" O.C. TYP.

6" METAL STUD 16" O.C. W/ R-19 INSULATION, TYP.

OPEN WEB STEEL JOIST REF. STRUCT.

SITE CAST CONCRETE TURN DOWN SLAB, REF. STRUCT.

R-10 RIGID INSULATION, TYP.

STEEL BEAM BEYOND, REF. STRUCT.

OPEN WEB STEEL JOIST, REF. STRUCT.

SITE CAST CONCRETE TURN DOWN SLAB, REF. STRUCT.

R-10 RIGID INSULATION, TYP.

STEEL BEAM BEYOND, REF. STRUCT.

OPEN WEB STEEL JOIST, REF. STRUCT.

SITE CAST CONCRETE TURN DOWN SLAB, REF. STRUCT.

R-10 RIGID INSULATION, TYP.
Request conceptual approval for the construction of a one-story multi-tenant commercial building.
Produce Lane

Overall Exhibit

C4.1

TINO
HOYT
No. 3909

+ERICT
AFTERUTO
NBERYIC
HULCO
ST

KYE
LME
HOT

DRAWINGS FOR:
Johns Island Retail
Subdivision Plat Recording Pending
1800 Produce Lane
City of Charleston, SC

DRAWN BY:
Kyle A. Taylor, P.E.
Kyle M. Hoyt, P.E.
January 20, 2021

CHECKED BY:

DATE:

OF 5

PROJECT #:
20-056

SCALE:

SHEET TITLE:

SHEET NUMBER:

REV

DESCRIPTION

DATE

BY

1" = 40'
January 20, 2021

David Meeks
DRB Administrator
City of Charleston
Dept. of Planning, Preservation & Sustainability Zoning Division
2 George St
Charleston SC, 29401

RE: Johns Island Retail
TMS#: To Be Determined (Subdivision Plat Recording Pending)
Johns Island Settlement Plan Narrative

Dear David:

Please accept this letter as a supplement to the Produce Lane DRB submittal concerning site plan design elements of Johns Island Settlement Plan adopted by City of Charleston City Council November 2007, and specifically in regards to the property located at the corner of Produce Lane and Maybank Hwy.

Century V Designated Gathering Place Nodes
The Settlement Plan established three (3) “Gathering Place” nodes within the Johns Island Urban Growth Boundary per the illustration below. The Plan reads, The City of Charleston, in its Century V Plan, designates three areas along Maybank Highway for development as Gathering Places. These areas are intended for compact, mixed-use, walkable neighborhoods employing an interconnected and complete network of streets. Further, these areas should accommodate a mix of uses including civic uses (school, library, satellite government offices) that complement existing home-grown businesses rather than displace them during the evolution of Johns Island. Illustration 4 shows the Gathering Place locations from the Century V Plan.
Form-Based Zoning
The Plan continues, Conventional 20th century commercial developments have been built at the intersections of Maybank and River Road and at Maybank and Main Road. These commercial properties typically feature retail shells placed behind large parking lots. Fairly large setback requirements in addition to buffer requirements along Maybank allow for strips of planted land to act as visual screens which partially hide the shopping centers from the sight of passing motorists. These development patterns do not afford the built environment the opportunity to address the street and therefore produce a substandard public realm.

While Johns Island is typical for large landscape buffers and setbacks, the study area for the Settlement Plan promotes Form-Based Zoning in lieu of the typical conventional zoning requirements of the City Ordinance.

This approach to defining the requirements for construction of human habitat is closely aligned with the overall recommendations of the Johns Island Growth Management Committee and previous planning efforts. It focuses development along the Maybank Highway in neighborhood cores. It produces neighborhoods that are mixed-use and compact, and therefore, effectively walkable. It is conservative in its use of land as it promotes compact patterns of development rather than hyper-low density suburban patterns that are land consumptive. And, it offers the opportunity to build a wide variety of housing types that can accommodate a diverse group of family types and income levels.

The Johns Island Retail design is intended to be consistent with this approach to address the street and public realm with a minimal setback and landscape buffer and produce a more form-based approach. This approach is further reflected in the City of Charleston Zoning Ordinance, which directs a “Type H” buffer within 2,000’ of River Road, which gives the DRB authority to reduce or eliminate the buffer as appropriate.
Town Section and “Four Corners” Approach

The subject site proximity to River Road also further casts vision for a “Town Section” and further as part of a “Four Corners” approach. With the successful introduction of two additional entry roads at Fenwick Hall Allee it will be possible to configure the intersection of Maybank and River Roads as a conventional “town-like” signalized intersection. This intersection is located at what is proposed to be the center of a Gathering Place neighborhood. As such, it will be enclosed by buildings placed at or close to the Right-of-Way on all four corners. The intersection will be designed to be pedestrian friendly, it will feature dedicated left turn lanes, and will be tree lined.

Illustration 24: MAYBANK HIGHWAY - TOWN SECTION

The proposed building placement is intended to be consistent with this approach to be at or near the front R/W line for the advancement of a Town section form.
Conclusion

The proposed Johns Island Retail design is consistent with the Settlement Plan approach for Johns Island supporting minimal buffers/setbacks and a form-based approach emphasizing appeal and engagement to the public realm for the subject site. The project goals are intent to capture the vision for the vicinity creating a Town-like gathering place, pedestrian friendly zone around River Road, and generally distinct from the typical rural-country design of much of Johns Island.

Further page excerpts of the Settlement Plan are included below in the attached Appendix for reference. If you have any questions, or require any additional information, please do not hesitate to contact me at (843) 870-7001, or via email at KTaylor@HoytBerenyi.com.

Sincerely,

Kyle A. Taylor, P.E.
Senior VP of Engineering
Hoyt + Berenyi
KTaylor@HoytBerenyi.com

Copy: 20-056
Regional planning is a challenging task—one that will not occur without the cooperation of the respective jurisdictions of the defined region. In planning for the study area from a regional perspective, it is imperative that we acknowledge that growth will occur. No-growth movements and “burn-the-bridge” mentalities continue to deny the problem/matter at hand, rather than addressing it. In planning for Johns Island, this growth should be directed to the appropriate “receiving” areas and diverted from the inappropriate “sending” areas. The Johns Island Community Plan is an attempt to address growth via implementation strategies rather than rehashing existing conditions.

Suburbs should complement and reflect the lexicon of settlement principles that created Downtown Charleston, including but not limited to human-scale form, inimitable public realm experiences, appreciated architectural detail, past preservation efforts, and a “green” urban experience via privatized gardens and public park spaces. Suburban growth should not be detrimental to existing cities but rather should be complementary. The Johns Island Community Plan is the first of a set of sub area plans of the City that contribute to the paradigm shift in suburbanization of the City.

The Berkeley, Charleston, Dorchester Council of Governments predicted that the Johns Island population is projected to nearly double in size between 1990 and 2015 from 8,775 to 15,230—a 75% increase, according to information cited in the 1995 Johns Island Land Use Plan Update. These projections were based on potential completion of the Mark Clark Expressway, potential residential buildout, and the availability of sewer on the Island. Today, ten years prior to this projected time, planned development on Johns Island could yield a total of 4,496 units, meaning that there could be an additional 10,026 people—a total of approximately 20,000 residents, which surpasses the 2005 projection by 58% and the 2015 population projection by 31%.

The City and County of Charleston have been working extensively to address this growth to ensure that it does not adversely impact the rural character of this sea island. Recent planning efforts are making the most of this growth by turning it into an opportunity to improve the quality of life on the island through transportation enhancements, affordable housing opportunities, preservation of open space and rural land, and mixed use developments that offer a variety of residential, commercial, employment, institutional, recreational, and open space opportunities.

It is essential to develop this sub-urban area efficiently. It is also essential, however, that suburban growth be managed so that the quality of life within developed areas of Johns Island improves as new neighborhoods are built and the region grows. Suburban growth must result in a quality urban environment so that the pressure to develop rural areas will be minimized. First and foremost, Johns Island is essential to the future of the region because it provides a unique agricultural resource within its rural district. Effective planning within the suburban area will ensure the prolonged place of this rural district. The City has
Settlement Patterns

Existing Conditions

At the time of this workshop, the study area on Johns Island consisted of properties that are either within the City, limits of the City of Charleston or under the jurisdiction of Charleston County. The planning, zoning and development regimes in place on Johns Island consist of conventional Euclidian, single-use zoning classifications and development ordinances consistent with 20th century practices. With regard to properties within the City, there are more than nineteen zoning classifications in use including SR-1, SR-2, SR-4, SR-6, SR-7, DR-1, DR-3, DR-6, DR-9, RR-1, CT, BP, LB, GB, C, GO, STR, LI, ND and PUD, along with several overlay zones.

During the workshop, it became clear that the current zoning of Johns Island is not sensitive to the context of Johns Island despite the fact that the current zoning/development standards adhere to previously recommended/adopted land use strategies for Johns Island. Just as other areas of the City of Charleston, Johns Island retains a sense of place that is unique to Johns Island. The directed settlement patterns by virtue of zoning and development standard ordinances should be sensitive to the context and simplified in order to promote preferred form rather than serve as a list of prohibitions. The "list of prohibitions" approach results in the end users trying to optimize their position without regard to the broader context.

A considerable proportion of the land within the Urban Growth Boundary has been developed or is occupied with wetlands, and as such, cannot be developed. The properties have been developed and are consistent with the zoning ordinances in place. A map delineates these properties from undeveloped properties and from properties that in their present state represent potential development opportunities (Illustration 3). The "potential development opportunity properties" are generally those that have one or only a few structures in place on a relatively large parcel. In many cases, these properties lie along Maybank Highway and are characterized by their relatively narrow and deep shape. It is recognized that the shape of these properties can be an obstacle to designing larger and more coherent neighborhoods or neighborhood centers.
Existing settlement patterns for the most part illustrate conventional suburban design, uniform distribution of density (repetitive lot types), lack of focus on architecture/public realm, “heavy on the land” infrastructure patterns that do not respect the ecology of Johns Island and zoning that focuses on use rather than form, and haphazard building placement.

The City of Charleston, in its Century V Plan, designates three areas along Maybank Highway for development as Gathering Places. These areas are intended for compact, mixed-use, walkable neighborhoods employing an interconnected and complete network of streets. Further, these areas should accommodate a mix of uses including civic uses (school, library, satellite government offices) that complement existing home-grown businesses rather than displace them during the evolution of Johns Island. Illustration 4 shows the Gathering Place locations from the Century V Plan.

Conventional 20th century commercial developments have been built at the intersections of Maybank and River Road and at Maybank and Main Road. These commercial properties typically feature retail shells placed behind large parking lots. Fairly large setback requirements in addition to buffer requirements along Maybank allow for strips of planted land to act as visual screens which partially hide the shopping centers from the sight of passing motorists. These development patterns do not afford the built environment the opportunity to address the street and therefore produce a substandard public realm.

For example, the design of the Peninsula affords unique interface between the buildings, streets, and ultimately the users of the space thus creating a more pedestrian-friendly environment. This type of compact, user-friendly design should be considered for the study area. This type of traditional neighborhood development, unlike suburban sprawl, results in a healthier growth pattern for the study area and Johns Island as a whole.

Currently, there are approximately ten new neighborhoods (subdivisions) planned and approved for construction within the Urban Growth Boundary.

Recommendations

Adopt a tailored version of the Ahwahnee Principles for Resource-Efficient Communities as the Johns Island Covenant of Settlement Patterns

In 1991, at the instigation of Local Government Commission staff-member Peter Katz, author of the New Urbanism, the commission brought together a group of architects who have been leaders in developing new notions of land use planning: Andres Duany and Elizabeth Plater-Zyberk, Stefanos Polyzoides and Elizabeth Moule, Peter Calthorpe, and Michael Corbett. These innovators were asked to come to agreement about what it is that the new planning ideas - from neotraditional planning to sustainable design - have in common and from there, to develop a set of community principles. Essentially, the public input during the Johns Island Community Planning Effort reflected and/or echoed the thoughts of these principles. Thus, the City of Charleston should adopt a tailored version of these principles for the study area. All decisions involving settlement patterns should adhere to these principles upon adoption, and developers should demonstrate to the public how these principles have been reflected in the proposed settlement pattern.
The purpose of this planning exercise is to craft the best future possible for Johns Island, whether or not I-526 is completed. Recommendations With the cooperation of a nationally recognized traffic-engineering consultant, several specific network alternatives were studied and are being recommended along with several recommendations relating to road design configurations that respond favorably to the existing character of the island.

The Maybank Highway Corridor, stretching from the eastern entry point at the terminus of the Johns Island connector to the intersection of Main, with Bohicket and Maybank at the western end, should be given special design attention. As the main transportation corridor through the island, it carries a large traffic volume and acts as the gateway for motorists coming from the east. In response to these factors, along with considerations related to function, aesthetics and environmental concerns, there are four primary aspects of the corridor to be addressed. The graphic on this page identifies these aspects in a diagrammatic way and includes the I-526 interchange, the gateway “canopy” condition along Maybank Highway, the type and form of the “Four Corners” intersection of Maybank and River Road, and the configuration of the remainder of the roadway in a "Town & Country" geometry.

I-526 Interchange. At the eastern end where Maybank and I-526 will connect, the selection of an appropriate highway interchange design is needed. This interchange design should minimize adverse environmental impacts and also be visually pleasing.

Preserve the Tree Canopy on Maybank By Building A Parallel Roadway at Least 100 feet South of the Existing Maybank Highway, Then Constructing Two Additional Entry Roads from Fenwick Alicee Westward. The mature tree canopy along Maybank Highway should be preserved. One very important and specific proposal that can do this involves the construction of two new routes, one north and one south that begin at the intersection of Maybank Highway and Fenwick Hall Alicee at a signalized intersection and proceed to points of intersection with River Road. This proposal is shown here. It is recognized that the placement of these roads must be done with consideration and evaluation of all the existing environmental conditions, historical assets and existing development in this area. It is believed that any widening of Maybank Highway along this gateway or entry portion of the road can be avoided with the introduction of these alternative routes to and from River Road. This proposal is also part of a larger initiative to develop a complete network of roads and streets throughout the study area and it is described in greater detail later in this report.

Build the Maybank/River Road Intersection in a Traditional Four Corners Approach. With the successful introduction of two additional entry roads at Fenwick Hall Alicee it will be possible to configure the intersection of Maybank and River Roads as a conventional “town-like” signalized intersection. This intersection is located at what is proposed to be the center of a Gathering Place neighborhood. As such, it will be enclosed by buildings placed at or close to the Right-of-Way on all four corners. The intersection will be designed to be pedestrian friendly, it will feature dedicated left turn lanes, and will be tree lined.

Configure Maybank Highway as a Sequence of Town and Country Sections. In conjunction with several planning and design initiatives described in a later portion of this report, it is proposed that the approximately three mile length of Maybank Highway between River Road and Main Road be reconfigured into “Town & Country” sections. Briefly, it is proposed that several compact, town-like or gathering place nodes be developed along Maybank Highway. Where these nodes exist, it is proposed that Maybank Highway assume a geometry appropriate for passage through the town section. At the

Transportation

Johns Island Community Planning Workshop
The City of Charleston, Department of Planning, Preservation & Economic Innovation
Conducted: March 5th through 10th, 2007 Charleston, South Carolina
Prepare a Set of Architectural Principles.

In general, the architectural vernacular of native Johns Island is light and whimsical. So that a sense of place is preserved and enhanced, it is recommended that a set of principles for architecture be prepared to inform owners, designers and builders as to preferred architectural choices. These principles would be based upon a study of Johns Island and Sea Island vernacular. It would discuss aspects of proportion, massing and form and address roof pitches, overhangs and eaves, fenestration and exterior elements such as porches and bays. It would address materials, finishes and color schemes and door and window shapes and types. It would address recommended practices in application of exterior detailing. It should not prohibit, however, evolution of newer solutions to construction problems as the economies and technologies of construction change and as design innovation advances, such as solar design. These principles or "promotions of appropriate form" should be incorporated into the form-based code for Johns Island.
edges of these gathering places, the road would take on a configuration appropriate for a country road designed to reflect Johns Island character. This includes tree preservation and planting of new trees within medians and alongside the road, the use of typical Johns Island drainage swales, and the introduction of an alternative transportation mode pathway (bicycle, pedestrian, other).

The graphics on this page illustrate recommended road cross-sections and plans for both the town and country portions of Maybank Highway. There is also a diagram that shows how the road transitions from a divided country configuration to a more urban geometry as the road passes through a gathering place.

Road and Street Network Enhancement

As an alternative to conventional road widening, it is recommended that adding parallel roads, where possible and making additional cross-connections between the primary roads increase the capacity of the road system. In some cases, additional cross-connections are already planned by way of design requirements for new neighborhoods. In other cases, it will be necessary to study and evaluate additional cross-connection and parallel alternatives.

Current traffic models demonstrate that distribution of traffic through a network increases capacity and improves intersection performance without the need for road widening. This alternative is highly desirable as it, therefore, allows the preservation of the existing road canopies. In addition, where roads are currently flanked by established tree stands the canopy effect will be extended, thereby enhancing this highly valuable environmental and aesthetic condition for future generations.

A proposal showing future cross-connectivity is shown in the preceding illustrations. Existing streets are shown to the left. The streets serving new neighborhoods (at various levels of completion) are shown as blue solid lines in the center illustration. Possible future connections are shown as green lines in the illustration on the right. This system represents an interconnected network of roads and streets that will provide...
Plan by Form, not by Use. It is recommended that a range of forms be included in the neighborhood cores and edges. Uses within the buildings should be allowed to evolve over time as population, demographics, the environment and the economy change over time. This also provides great opportunity for smaller and simpler dwellings that are, by their nature, more affordable. This will require a new approach to administering “uses”—form-based zoning. The prevailing single-use practice is not sustainable and further encourages sprawling settlement patterns.

Establish Form-Based Zoning for the Study Area. Regarding form-based zoning, Rangwala states, “This approach shifts the focus of local government oversight from the conventional hyper-control of uses to a more limited (and rational) emphasis on the form of the built environment: the streets, the public spaces formed by the disposition of buildings, and the form of the buildings themselves. There are important differences between conventional zoning practice and form-based practice. In effect, conventional zoning assigns regulations to individual parcels as placeholders, but these, however, are seldom tied to a specific vision of how a community wants to look. Conversely, the regulations in form-based codes are keyed to various street and building types. ‘In this format, the focus shifts from the regulation of activities on private property by location to encouraging property owners to build in ways that further a community’s sense of itself, particularly in terms of the design of the public realm. To communicate such a framework, form-based codes typically utilize drawings, diagrams and photographs. The public officials and designers find it easier to understand these than the lists, charts and formulas that dominate standard zoning practice. In practice, the basis of form-based zoning is the same as that for more conventional types, a comprehensive master plan, spelling out how a city wants to develop, underlines both. The form based alternative, however, seeks to develop a more meaningful implementation of the three-dimensional vision implied in the master plan. In particular, a form-based code is generally built on a regulating plan, which in turn relates to more specific building envelope standards, street sections, architectural standards, and definitions.”

Illustration 8
Pedestrian Sheds: As a general rule, it is understood that most people will walk approximately 5 minutes to satisfy daily needs and 10 minutes to access public transportation. The illustration above shows that the major portion of each of the three designated C-5 zones falls within the 5 minute walk radius and they are all entirely within the 10 minute radius.

Settlement Patterns
Previous: Bird’s Eye View Southwest from Maybank
Proposed: Bird’s Eye View Southwest from Maybank

9'-1 3/4"
12'-7 3/8"
37'-9"
Bird's Eye Rear Parking North
View West Maybank

Previous

Proposed

Produce Ln

25'-10"

Maybank Hwy

33'-2"

Maybank Hwy
View West Maybank – Palms Shown
View East from Maybank Hwy

Previous

Proposed

Retaining Wall
(Wetlands Beyond)
Enlarged View at Tenants B & C
View West from Maybank Hwy
View at Parking Entry from Produce Lane
Enlarged View Unit D
Enlarged View Unit A and Outdoor Patio with Trellis
1.27.2021 || Miller Cadillac Tract

Preliminary Design Review Board

Exterior Materials Palette

Trellis:
- 10x10 Posts
- Paired 2x12 Beams
- Painted Gray (SW)
- Joists: Double 2x10 Cedar

Patio Screen Wall:
- 16x16 Oyster Tabby Stucco Piers
- Slats: Alternating 2x6 and 2x4

Doors/Windows:
- Aluminum Storefront
- 2.5" Frame
- Color: Black
- Impact Rated

Extruded Alum. Trim by Tamlyn

Canopies:
- Painted Gray (SW)
- Rafter Tails Painted White (SW 7007 Bright White)
- Canopy Soffit: P.T. Plywood V Groove

Coping:
- Brake Metal, RollFab or Eq.
- Finish: Kynar Grey

Brick Edging:
- Savannah Grey
- Fully Mortared Stretcher

Entry Sidewalks & Patio:
- Oyster Tabby Concrete
- 7x7" Scoring (Patio)
- 2x2" Scoring (Entries)

Vertical Siding:
- Tenant "A"
- V Groove Fiber Cement
- 7" Exposure
- Painted White (SW 7007 Bright White)

Roof:
- Metal, Standing Seam
- Galvalum, 1.75" Rib
- Snap Lock Profile
- Color: Gray

Trim:
- 5.5" Fiber Cement
- Painted White (SW 7007 Bright White)

Horizontal Siding:
- Tenant "B" & "C"
- V Groove Fiber Cement
- 5" Exposure, Painted
- Color Rain Drop (SW 6485)

Board & Batten Siding:
- Tenant "D"
- 1x2 Fiber Cement Batten
- On 5/16" Fiber Cement Panels
- Painted White (SW 7007)
Solid Stained Wood

Live Oak Square Street Condition
Eco-RLM Line - 10” & 12” Angle Shade

Features

- UL Listed for Wet Locations
- Every Gooseneck Arm comes with round mounting plate to fit onto standard round junction box
- 100” Wire Length Included With Every Shades
- Up to 200W Incandescent or LED Compatible

Specifications

<table>
<thead>
<tr>
<th>Base Type</th>
<th>Medium (E26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulb Type</td>
<td>LED / Incandescent</td>
</tr>
<tr>
<td>Voltage</td>
<td>120 Volts</td>
</tr>
<tr>
<td>Max Wattage</td>
<td>200W A21</td>
</tr>
<tr>
<td>Material</td>
<td>Cold Rolled Steel, and Die Cast Zinc Shade w/ Glass and Guard Options</td>
</tr>
</tbody>
</table>

Finishes Available:
- Architectural Bronze: ABR
- Black Porcelain: BP
- Galvanized: GA
- Satin Black: SB
- Satin Green: SG
- Satin Red: SR
- White: WH
- White Porcelain: WP
- Sea Foam Porcelain: SFP
Eco-RLM Line - 10” & 12” Angle Shade

Gooseneck Arms

<table>
<thead>
<tr>
<th>Catalog</th>
<th>ID</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGN10-ABR</td>
<td>3/4”</td>
<td>10”</td>
</tr>
<tr>
<td>RGN10-GA</td>
<td>3/4”</td>
<td>10”</td>
</tr>
<tr>
<td>RGN10-SB</td>
<td>3/4”</td>
<td>10”</td>
</tr>
<tr>
<td>RGN10-SG</td>
<td>3/4”</td>
<td>10”</td>
</tr>
<tr>
<td>RGN10-SR</td>
<td>3/4”</td>
<td>10”</td>
</tr>
<tr>
<td>RGN10-WH</td>
<td>3/4”</td>
<td>10”</td>
</tr>
<tr>
<td>RGN12-ABR</td>
<td>3/4”</td>
<td>13”</td>
</tr>
<tr>
<td>RGN12-GA</td>
<td>3/4”</td>
<td>13”</td>
</tr>
<tr>
<td>RGN12-SB</td>
<td>3/4”</td>
<td>13”</td>
</tr>
<tr>
<td>RGN12-SG</td>
<td>3/4”</td>
<td>13”</td>
</tr>
<tr>
<td>RGN12-SR</td>
<td>3/4”</td>
<td>13”</td>
</tr>
<tr>
<td>RGN12-WH</td>
<td>3/4”</td>
<td>13”</td>
</tr>
<tr>
<td>RGN15-ABR</td>
<td>3/4”</td>
<td>14 1/2”</td>
</tr>
<tr>
<td>RGN15-GA</td>
<td>3/4”</td>
<td>14 1/2”</td>
</tr>
<tr>
<td>RGN15-SB</td>
<td>3/4”</td>
<td>14 1/2”</td>
</tr>
<tr>
<td>RGN15-SG</td>
<td>3/4”</td>
<td>14 1/2”</td>
</tr>
<tr>
<td>RGN15-SR</td>
<td>3/4”</td>
<td>14 1/2”</td>
</tr>
<tr>
<td>RGN15-WH</td>
<td>3/4”</td>
<td>14 1/2”</td>
</tr>
<tr>
<td>RGN22-ABR</td>
<td>3/4”</td>
<td>21 1/2”</td>
</tr>
<tr>
<td>RGN22-GA</td>
<td>3/4”</td>
<td>21 1/2”</td>
</tr>
<tr>
<td>RGN22-SB</td>
<td>3/4”</td>
<td>21 1/2”</td>
</tr>
<tr>
<td>RGN22-SG</td>
<td>3/4”</td>
<td>21 1/2”</td>
</tr>
<tr>
<td>RGN22-SR</td>
<td>3/4”</td>
<td>21 1/2”</td>
</tr>
<tr>
<td>RGN22-WH</td>
<td>3/4”</td>
<td>21 1/2”</td>
</tr>
<tr>
<td>RGN23-ABR</td>
<td>3/4”</td>
<td>23”</td>
</tr>
<tr>
<td>RGN23-GA</td>
<td>3/4”</td>
<td>23”</td>
</tr>
<tr>
<td>RGN23-SB</td>
<td>3/4”</td>
<td>23”</td>
</tr>
<tr>
<td>RGN23-SG</td>
<td>3/4”</td>
<td>23”</td>
</tr>
<tr>
<td>RGN23-SR</td>
<td>3/4”</td>
<td>23”</td>
</tr>
<tr>
<td>RGN23-WH</td>
<td>3/4”</td>
<td>23”</td>
</tr>
</tbody>
</table>

Stems & Canopy Kits

<table>
<thead>
<tr>
<th>Catalog</th>
<th>ID</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSCM-ABR</td>
<td>3/4”</td>
<td>2”</td>
</tr>
<tr>
<td>RSCM-GA</td>
<td>3/4”</td>
<td>2”</td>
</tr>
<tr>
<td>RSCM-SB</td>
<td>3/4”</td>
<td>2”</td>
</tr>
<tr>
<td>RSCM-SG</td>
<td>3/4”</td>
<td>2”</td>
</tr>
<tr>
<td>RSCM-SR</td>
<td>3/4”</td>
<td>2”</td>
</tr>
<tr>
<td>RSCM-WH</td>
<td>3/4”</td>
<td>2”</td>
</tr>
<tr>
<td>RS2-ABR</td>
<td>3/4”</td>
<td>24”</td>
</tr>
<tr>
<td>RS2-GA</td>
<td>3/4”</td>
<td>24”</td>
</tr>
<tr>
<td>RS2-SB</td>
<td>3/4”</td>
<td>24”</td>
</tr>
<tr>
<td>RS2-SG</td>
<td>3/4”</td>
<td>24”</td>
</tr>
<tr>
<td>RS2-SR</td>
<td>3/4”</td>
<td>24”</td>
</tr>
<tr>
<td>RS2-WH</td>
<td>3/4”</td>
<td>24”</td>
</tr>
<tr>
<td>RSC-SCK</td>
<td>3/4”</td>
<td>5 3/4”</td>
</tr>
<tr>
<td>RSCK-ABR</td>
<td>5 3/4”</td>
<td>5 3/4”</td>
</tr>
<tr>
<td>RSCK-GA</td>
<td>5 3/4”</td>
<td>5 3/4”</td>
</tr>
<tr>
<td>RSCK-SB</td>
<td>5 3/4”</td>
<td>5 3/4”</td>
</tr>
<tr>
<td>RSCK-SG</td>
<td>5 3/4”</td>
<td>5 3/4”</td>
</tr>
<tr>
<td>RSCK-SR</td>
<td>5 3/4”</td>
<td>5 3/4”</td>
</tr>
<tr>
<td>RSCK-WH</td>
<td>5 3/4”</td>
<td>5 3/4”</td>
</tr>
</tbody>
</table>
Eco-RLM Line - RAS10 Angle Shade

Photometric and Electrical Measurements - Distribution Method

<table>
<thead>
<tr>
<th>Intertek Sample No.</th>
<th>Base Orientation</th>
<th>Input Voltage (Vac)</th>
<th>Input Current (mA)</th>
<th>Input Power (Watts)</th>
<th>Input Power Factor</th>
<th>Absolute Luminous Flux (Lumens)</th>
<th>Lumen Efficacy (Lumens Per Watt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M242867-1</td>
<td>UP</td>
<td>120.0</td>
<td>1384</td>
<td>166.1</td>
<td>1.000</td>
<td>1170</td>
<td>7.044</td>
</tr>
</tbody>
</table>

Intensity (Candlepower) Summary at 25°C - Candelas

<table>
<thead>
<tr>
<th>Angle</th>
<th>0</th>
<th>22.5</th>
<th>45</th>
<th>67.5</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>380</td>
</tr>
<tr>
<td>5</td>
<td>365</td>
<td>366</td>
<td>368</td>
<td>373</td>
<td>379</td>
</tr>
<tr>
<td>10</td>
<td>341</td>
<td>343</td>
<td>350</td>
<td>361</td>
<td>373</td>
</tr>
<tr>
<td>15</td>
<td>313</td>
<td>316</td>
<td>325</td>
<td>342</td>
<td>364</td>
</tr>
<tr>
<td>20</td>
<td>291</td>
<td>294</td>
<td>307</td>
<td>325</td>
<td>353</td>
</tr>
<tr>
<td>25</td>
<td>264</td>
<td>270</td>
<td>285</td>
<td>307</td>
<td>338</td>
</tr>
<tr>
<td>30</td>
<td>221</td>
<td>238</td>
<td>267</td>
<td>294</td>
<td>326</td>
</tr>
<tr>
<td>35</td>
<td>144</td>
<td>165</td>
<td>226</td>
<td>276</td>
<td>312</td>
</tr>
<tr>
<td>40</td>
<td>78</td>
<td>96</td>
<td>156</td>
<td>252</td>
<td>296</td>
</tr>
<tr>
<td>45</td>
<td>38</td>
<td>46</td>
<td>89</td>
<td>194</td>
<td>275</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>25</td>
<td>44</td>
<td>125</td>
<td>248</td>
</tr>
<tr>
<td>55</td>
<td>8</td>
<td>12</td>
<td>24</td>
<td>67</td>
<td>195</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>2</td>
<td>12</td>
<td>36</td>
<td>125</td>
</tr>
<tr>
<td>65</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>20</td>
<td>67</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Eco-RLM Line - RAS10 Angle Shade

Illumination Plots

Model No.: RAS10-WH
Mounting Height: 10 ft.

Zonal Lumen Summary and Percentages at 25°C

<table>
<thead>
<tr>
<th>Zone</th>
<th>Lumens</th>
<th>% Luminaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-30</td>
<td>300.2</td>
<td>25.7</td>
</tr>
<tr>
<td>0-40</td>
<td>493.3</td>
<td>42.2</td>
</tr>
<tr>
<td>0-60</td>
<td>849.2</td>
<td>72.6</td>
</tr>
<tr>
<td>60-90</td>
<td>296.9</td>
<td>25.4</td>
</tr>
<tr>
<td>0-90</td>
<td>1146</td>
<td>98.0</td>
</tr>
<tr>
<td>90-180</td>
<td>23.5</td>
<td>2.0</td>
</tr>
<tr>
<td>0-180</td>
<td>1170</td>
<td>100.0</td>
</tr>
</tbody>
</table>
TECHNICAL DATA SHEET

Eco-RLM Line - RAS12 Angle Shade

Photometric and Electrical Measurements - Distribution Method

<table>
<thead>
<tr>
<th>Intertek Sample No.</th>
<th>Base Orientation</th>
<th>Input Voltage (Vac)</th>
<th>Input Current (mA)</th>
<th>Input Power (Watts)</th>
<th>Input Power Factor</th>
<th>Absolute Luminous Flux (Lumens)</th>
<th>Lumen Efficacy (Lumens Per Watt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M242869-2</td>
<td>UP</td>
<td>120.0</td>
<td>1388</td>
<td>166.8</td>
<td>1.000</td>
<td>1123</td>
<td>6.733</td>
</tr>
</tbody>
</table>

Intensity (Candlepower) Summary at 25°C - Candelas

<table>
<thead>
<tr>
<th>Angle</th>
<th>0</th>
<th>22.5</th>
<th>45</th>
<th>67.5</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAS12-WH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>410</td>
<td>410</td>
<td>410</td>
<td>410</td>
<td>410</td>
</tr>
<tr>
<td>5</td>
<td>397</td>
<td>398</td>
<td>400</td>
<td>404</td>
<td>410</td>
</tr>
<tr>
<td>10</td>
<td>369</td>
<td>372</td>
<td>381</td>
<td>394</td>
<td>407</td>
</tr>
<tr>
<td>15</td>
<td>333</td>
<td>338</td>
<td>351</td>
<td>373</td>
<td>398</td>
</tr>
<tr>
<td>20</td>
<td>304</td>
<td>311</td>
<td>327</td>
<td>351</td>
<td>387</td>
</tr>
<tr>
<td>25</td>
<td>241</td>
<td>260</td>
<td>297</td>
<td>329</td>
<td>368</td>
</tr>
<tr>
<td>30</td>
<td>151</td>
<td>174</td>
<td>238</td>
<td>309</td>
<td>351</td>
</tr>
<tr>
<td>35</td>
<td>78</td>
<td>91</td>
<td>152</td>
<td>266</td>
<td>332</td>
</tr>
<tr>
<td>40</td>
<td>48</td>
<td>55</td>
<td>81</td>
<td>188</td>
<td>307</td>
</tr>
<tr>
<td>45</td>
<td>30</td>
<td>35</td>
<td>51</td>
<td>105</td>
<td>263</td>
</tr>
<tr>
<td>50</td>
<td>16</td>
<td>20</td>
<td>33</td>
<td>63</td>
<td>178</td>
</tr>
<tr>
<td>55</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>42</td>
<td>96</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>2</td>
<td>10</td>
<td>28</td>
<td>61</td>
</tr>
<tr>
<td>65</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>16</td>
<td>42</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>27</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Eco-RLM Line - RAS12 Angle Shade

Illumination Plots

Model No.: RAS12-WH
Mounting Height: 10 ft.

Zonal Lumen Summary and Percentages at 25°C

<table>
<thead>
<tr>
<th>Zone</th>
<th>Lumens</th>
<th>% Luminaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAS12-WH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-30</td>
<td>330.3</td>
<td>29.4</td>
</tr>
<tr>
<td>0-40</td>
<td>526.1</td>
<td>46.8</td>
</tr>
<tr>
<td>0-60</td>
<td>871.4</td>
<td>77.6</td>
</tr>
<tr>
<td>60-90</td>
<td>238.6</td>
<td>21.2</td>
</tr>
<tr>
<td>0-90</td>
<td>1110</td>
<td>98.8</td>
</tr>
<tr>
<td>90-180</td>
<td>12.9</td>
<td>1.2</td>
</tr>
<tr>
<td>0-180</td>
<td>1123</td>
<td>100.0</td>
</tr>
</tbody>
</table>